You are viewing entries tagged ec2 and may want to check out the most recent entries.

The latest round of our ongoing Framework Benchmarks project is now available! Round 9 updates several test implementations and introduces a new test environment using modern server hardware.

View Round 9 results

Since the first round, we have known that the highest-performance frameworks and platforms have been network-limited by our gigabit Ethernet. For Round 9, Peak Hosting has provided a high-performance environment equipped with 10-gigabit Ethernet at one of their data centers.

With ample network bandwidth, the highest-performing frameworks are further differentiated. Additionally, the Peak test environment uses servers with 40 HT cores across two Xeon E5 processors, and the results illustrate how well each framework scales to high parallelism on a single server node.

View Round 9 results now.

Round 9 notes and observations

In previous rounds, JSON serialization results for the highest-performance frameworks on our in-house i7 hardware converged on approximately 200,000 requests per second. Although some response headers are normalized, we believe that the small variations beyond 200,000 RPS are caused by how each framework uses the available bandwidth of our gigabit Ethernet.

For example, a larger number of response headers might mean slightly fewer responses sent per second. However, this is acceptable as we want each implementation to be production-grade and typical for the framework, not tuned to include only the response headers we require. Thorough normalization of behavior is not a goal. (More importantly, we recommend against making decisions based on such small variations. 200,000 versus 20,000 is notable; 210,000 versus 200,000 is probably not.)

Top JSON results on i7 versus Peak
Top ten frameworks at JSON serialization; i7 on left, Peak on right

With 10-gigabit Ethernet, the results from the new Peak environment show a larger spread between top-performing frameworks. Of course, other variables are at play, such as significantly more HT processor cores--40 versus 8 for our i7 tests--and a different system architecture, NUMA.

The NUMA architecture presented a variety of challenges including unexpected difficulty scaling the database servers to utilize all available CPU cores. For example, we are using MySQL 5.5 in our database tests, but later versions of MySQL are reportedly better suited for NUMA. For this reason, we may migrate all MySQL tests to a more recent version in a future round. Having reviewed the results, we plan to use differently-equipped machines for Round 10. The hardware specifications used in Round 9 were not well-optimized for the web-app use case our project exercises.

As a result of the concessions made for NUMA, the performance delta for database tests between our i7 workstations and the the 40-core Xeon servers is not as pronounced as the non-database tests. We'd like to see this situation improve in future rounds. We would be happy to receive input and advice from readers with NUMA database deployment expertise.

Similarly, we expect that some application platforms are better suited for NUMA than others. For example, platforms that use process-level concurrency scaled to a large number of processor cores quite well. For JSON serialization, node.js performance in the Peak environment is about 3.3x that of i7. Meanwhile, Go's JSON serialization performance on Peak is only 1.6x that of i7. Even more interesting: Go's database performance is slightly lower on Peak than i7. (Yes, the Go tests use all CPU cores. Putting aside scaling as CPU cores increase, Go is quicker in the JSON serialization test than node.js in both environments.)

C++ continues to dominate virtually all tests. If you are a web developer using C++, you win this particular bragging-rights game. With 6,738,911 plaintext RPS from this single server, the remarkable 188,585 Fortunes RPS might be overlooked at first although it may be more impressive on consideration.

For Round 9, we added validation checks that confirm each implementation is behaving as we expect prior to measuring its performance. These checks are rigid--failing implementations for improper JSON response schema, for example--but ultimately a valuable tool to ensure fairness. We've fixed up many of the implementations to pass validation, but several remain to be fixed. If your favorite framework is showing up as "did not complete" at the bottom of the charts, we'd appreciate your help in correcting that for the next round. Visit the GitHub repository if you can lend a hand.

Busy schedules delayed Round 9. We apologize for the delay and thank you for your continued interest and patience! We welcome you to join in for Round 10.


As always, thank you to all of the contributes to this project, especially those who helped us address validation errors for this latest round.

An extra special thanks to Peak Hosting for providing a no-joking-around, no-holds-barred, genuine server environment. It has been a treat to see these servers set massive new records.

If you have questions, comments, criticism, or would like to contribute a new test or an improvement to an existing one, please join our Google Group or visit the project at Github.

About TechEmpower

We provide web and mobile application development services and are passionate about application performance. We are presently looking for a generalist web/mobile developer to expand our team. If this sounds interesting to you, we'd love to hear from you.

December 17, 2013

Framework Benchmarks Round 8

Merry Christmas web framework performance aficionados! What better way to celebrate the holidays than by cheering on your favorites as they race through a variety of application fundamentals in the biggest web platform grudge match of the season? We certainly can't think of anything more festive.

Now at 90 frameworks and 230 permutations (variations on configuration), Round 8 has something for everyone. And if it doesn't have what you want, you can join the party! We have fruitcake and egg nog. Or maybe not. But we enjoy pull requests; they're almost as good as egg nog.

A veritable rainbow of holiday cheer awaits!

View Round 8 results

View Round 8 results now.

Round 8 notes and observations

  • Go, always the scrappy competitor, flexes some performance muscle and lands a razor-thin victory in JSON serialization on i7 hardware. But be aware, the highest-performance frameworks are network limited in the JSON serialization and Plaintext tests. Anything in this "200k club" is sure to keep overhead at a bare minimum, leaving maximum headroom for your custom application logic.
  • Round 7 was missing some of the Go frameworks due to configuration problems. Those problems have been resolved, and the Go frameworks have returned in Round 8 to reaffirm that Go is a viable performance rival to the JVM.
  • The HipHop PHP VM with no framework and thanks in part to the MySQL driver for PHP, yields dominion over the Updates test. HHVM is impressive in the multiple query test as well. However, hhvm trails plain PHP in the Fortunes test presently. Implementation details may be at play here. If you're interested in testing HHVM with popular PHP frameworks, we would be happy to receive a pull request.
  • Vert.x and Netty have wrestled the Plaintext crown from Undertow, but this rivalry isn't yet settled. Rumor has it they have more improvements in store for Round 9. Meanwhile, a newcomer named Plain (which may rival Go as the most in need of a more search-friendly name; though the irony of Go makes it uncontested champion) is right behind the leaders. Most interestingly, Plain demonstrates the highest Windows performance we've seen by a massive margin (reaching 611,095 pipelined plaintext requests per second on i7). Once again, bear in mind that these tests are network-bound by our gigabit Ethernet.
  • On EC2, the Netty and Vert.x upgrades have paid huge dividends with Netty now breaking 200,000 pipelined plaintext responses per second on a humble m1.large instance.
  • Grizzly performance on JSON serialization is off from its Round 7 showing, but unfortunately, we have not yet determined the cause.
  • The Plaintext test requirements were clarified. It is not necessary to copy the bytes of the small response payload per request. Using a pre-rendered byte buffer for the body is acceptable as long as that is conventional for the platform or framework being tested and response headers are composed normally.
  • The maximum query and update performance for Mongo on EC2 is substantially higher than MySQL. When looking at that chart in particular, consider filtering by your preferred data store to maintain a useful perspective. Related: a late change to the Mongo "schema" intended to replace "id" with "_id" caused some challenges. We further postponed Round 8 to re-run Mongo tests with a schema that provides both columns to allow all tests to complete. We want to normalize the implementations for Round 9.
  • We were targeting early December for Round 8 and we're off by about two weeks. There is still room for improvement toward our goal of a monthly cycle. We will target mid-January for Round 9.


A big thank-you to all of the contributors who have added and improved existing test implementations for Round 8.

The contributors for Round 8 are, in no particular order: @lhotari, @methane, @pseudonom, @lucassp, @aualin, @weltermann17, @kpacha, @nareshv, @martin-g, @bclozel, @ijl, @bbrowning, @sbordet, @purplefox, @stuartwdouglas, @normanmaurer, @kardianos, @hamiltont, and @julienschmidt.

If you have questions, comments, criticism, or would like to contribute a new test or an improvement to an existing one, please join our Google Group or visit the project at Github.

About TechEmpower

We provide web and mobile application development services and are passionate about application performance. Read more about what we do.

October 31, 2013

Framework Benchmarks Round 7

Happy Halloween fans of web development frameworks! After a several-month hiatus, Round 7 of our project measuring the performance of web application frameworks and platforms is available!

View Round 7 results

Round 7 includes many new framework test implementations contributed by the community. They are Falcore, Grizzly, HttpListener, PHPixie, Plain, Racket-WS, Start, Stream, and Treefrog. There are now a whopping 84 frameworks and over 200 individual test permutations.

Many preexisting frameworks' tests have been updated to include more test coverage and/or update dependencies and tune their implementation. To date, the project has processed 344 pull requests from the community. Thanks so much for your contributions. We are grateful for your continued interest!

View Round 7 results now.

Round 7 notes and observations

  • The Round 6 champion Undertow (the web server for WildFly) continues to impress with chart-dominating showings such as 180,000 plaintext requests per second on meager m1.large instances.
  • Thanks to community contributions, the C# tests have been dramatically improved, especially when querying the database. We also have some SQL Server tests in our i7 environment.
  • A contributor prepared scripts for running the benchmark suite on Windows Azure. Unfortunately, we were unable to reach the author of these scripts in the past weeks. If any Azure experts are interested in picking up that work where it exists now, please visit the GitHub repository or the Google Group for the project.
  • The high-performance tier has become significantly more crowded even during this project's relatively short history. Most interesting to us is how many frameworks can easily saturate our gigabit Ethernet with the JSON serialization and plaintext tests, even with our tests' intentionally small payloads. We do not have the hardware necessary to run 10 gigabit Ethernet tests, but if you have a 10 GBE lab and are willing to run the suite, we'd love to publish the results.
  • The benchmark toolset continues to mature gradually, but a lot of room for improvement still exists. A great deal of sanity-checking remains a manual process. If you're a Python programmer and interested in this project, let us know. We have several enhancements we'd like to make to the benchmark tool set (Python scripts), time permitting.
  • This round used a community-review model wherein project participants were able to review preliminary results we were capturing in our i7 environment and submit pull requests. The model is not perfect and will need to improve with each round, but it will help reduce the amount of time we (TechEmpower) need to allocate to each round's sanity checks, meaning quicker turn-around of rounds (see how I spun that as a good thing?).
  • Starting now, we aim to be on a monthly cycle of running official rounds. This helps reduce the perceived severity of configuration problems since they can be addressed in the next run, which is only a month away.
  • We've also pushed the display name for tests into the project, allowing contributors to assign test permutations any name they choose. E.g., "play-scala-anorm" and "aspnet-mvc-mono."
  • One particularly interesting anomaly is the dominance of Windows paired with Mongo on EC2 in the Updates test. The performance is only slightly lower than the same pairing on i7, where in most cases our i7s (2600K workstations, to be precise) and EC2 (m1.large) instances differ by a factor of seven or more. It's possible the Windows EC2 instance is running on a newer host than the Linux EC2 instance, but both are classified as m1.large.
  • Speaking of database tests, in previous rounds, we had used an SSD to host the databases. Prior to finishing Round 7, that SSD failed, so Round 7 is run with ramdisk-backed databases (excluding SQL Server). This project is not a database benchmark so we believed it would be fascinating to see the performance of the full stack when the friction of the database writes is reduced to a bare minimum. As confirmed by our previous spot checking in Round 5, database writes are about 20% to 30% faster across the board when using a ramdisk versus the Samsung 840 Pro SSD we had been using. As expected, reads are unaffected since the tests are designed to allow the database engine to fit the entire data set into memory.


As always, we'd like to say thank you to all of the contributors who have added test implementations for new frameworks or improved existing implementations. Round 7 was unusually long, so we also thank everyone for their patience.

The contributors for Round 7 are numerous. In no particular order: @fernandoacorreia, @kppullin, @MalcolmEvershed, @methane, @KevinHoward, @huntc, @lucassp, @dracony, @weltermann17, @kekekeks, @fwbrasil, @treefrogframework, @yogthos, @oberhamsi, @purplefox, @yz0075, @necaris, @pdonald, @Kepinator, @DavidBadura, @zznate, @nightlyone, @jeapostrophe, @astaxie, @troytoman, @grob, @torhve, @trautonen, @stuartwdouglas, and @xaxaxa. Sincere apologies if we forgot anyone!

If you have questions, comments, criticism, or would like to contribute a new test or an improvement to an existing one, please join our Google Group or visit the project at Github.

About TechEmpower

We provide web and mobile application development services and are passionate about application performance. Read more about what we do.